P= 1+0 64

tota--

S - 2363

Total No. of Pages: 4

No.

S.E. (Computer Science and Engineering) (Part - I) (Semester - III) Examination, December - 2015

APPLIED MATHEMATICS (Revised)

Sub. Code: 63524

Day and Date: Monday, 07 - 12 - 2015

Total Marks: 50

Time: 10.00 a.m. to 12.00 noon

Instructions:

- 1) All questions are compulsory.
- 2) Use of non programmable calculator is allowed.
- Figures to the right indicate full marks.

SECTION - I

Q1) Attempt any one:

[9]

- a) The table below gives the respective heights x and y of a sample of 10 fathers and their sons:
 - i) Find regression line of y on x.
 - ii) Find regression line of x on y.
 - iii) Estimate son's height if father's height is 65 inches.
 - iv) Estimate father's height if son's height is 60 inches.

Height of father x (inches):	65	63	67	64	68	62	70	66	68	67
Height of son y (inches):	68	66	68	65	69	66	68	65	71	67

b) Fit a second degree parabolic curve to the following data:

х:	-4	-3	-2	- 1	0	1	2	3	4	5
y:	21	12	4	1	2	7	15	30	45	67

Q2) Attempt ANY TWO:

- The life-time of certain type of battery has mean life of 400 hours and a standard deviation of 50 hours. Assuming the distribution of life-time to be normal, find
 - The percentage of batteries which have life-time more than 350 hours.
 - The percentage of batteries which have life-time between 300 and 500 hours.

(For S.N.V.z area under the curve between z=0 and z=1 is 0.3413 and that of between z=0 and z=2 is 0.4772)

- b) In a certain factory turning out razor blades, there is a small chance of 1/500 for any blade to be defective. The blades are supplied in a packet of 10. Use Poisson distribution to calculate the approximate number of packets containing no. defective and two defective blades, in a consignment of 10,000 packets.
- A die is thrown 8 times and it is required to find the probability that 3 will show:
 - i) Exactly 2 times
 - ii) at least seven times

Q3) Attempt ANY TWO:

[8]

- a) Find a root of the equation $x^3 2x 5 = 0$ using secant method correct to three decimal places.
- b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpson's 3/8 rule.
- c) Using Newton-Raphson method, find the positive root of $x^4 x = 10$ correct to three decimal places.

SECTION - II

Q4) Attempt ANY TWO:

[8]

Consider the fuzzy set A and B given by

$$A(x) = \frac{x}{x+1}$$
, $B(x) = 1 - \frac{x}{10}$; $x \in \{0,1,2,...,10\}$.

Find |A|, |B|, S(A, B), S(B, A).

Find the fuzzy cardinality of the fuzzy set defined by :

$$A(x) = \frac{35-x}{15}$$
; $x \in \{20, 22, 24, 26, 28, 30, 32, 34\}$.

If the fuzzy sets A and B are defined by the following membership functions

$$A(x) = \frac{0.1}{1} + \frac{0.6}{2} + \frac{0.8}{3} + \frac{0.9}{4} + \frac{0.7}{5} + \frac{0.1}{6}$$

$$B(x) = \frac{0.9}{1} + \frac{0.7}{2} + \frac{0.5}{3} + \frac{0.2}{4} + \frac{0.1}{5} + \frac{0}{6}$$

Calculate $\overline{A}, \overline{B}, \overline{A \cup B}, \overline{A \cap B}$

Q5) Attempt ANY ONE:

[9]

Calculate the fuzzy number A + B and A - B, where

$$A(x) = \begin{cases} 0 & , & x \le -2 \text{ and } x > 4 \\ \frac{x+2}{3} & , & -2 < x \le 1 \\ \frac{4-x}{3} & , & 1 < x \le 4 \end{cases} ; A(x) = \begin{cases} 0 & , & x \le 4 \text{ and } x > 10 \\ \frac{x-4}{3} & , & 4 < x \le 7 \\ \frac{10-x}{3} & , & 7 < x \le 10 \end{cases}$$

Determine which of the fuzzy sets are fuzzy numbers, using the criteria of a fuzzy set to be fuzzy number.

i)
$$A(x) = \begin{cases} \min(1, x) & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$
 ii) $B(x) = \begin{cases} \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{other wise} \end{cases}$
iii) $C(x) = \begin{cases} \tan x & \text{for } 0 \le x \le \pi/4 \\ 0 & \text{other wise} \end{cases}$ iv) $D(x) = \begin{cases} x & \text{for } 0 \le x \le 1 \\ 0 & \text{other wise} \end{cases}$

ii)
$$B(x) = \begin{cases} \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{other wise} \end{cases}$$

iii)
$$C(x) = \begin{cases} \tan x & \text{for } 0 \le x \le \pi/\\ 0 & \text{other wise} \end{cases}$$

iv)
$$D(x) = \begin{cases} x & \text{for } 0 \le x \le 1 \\ 0 & \text{other wise} \end{cases}$$

Q6) Attempt ANY ONE:

a) A travelling salesman has to visit five cities. He wishes to start from a particular city, visit each city once and then return to his starting point. The travelling cost (in' 000 Rs) of each city from a particular city is given below:

				To City		
		A	B	C	D	E
	A	∞	2	5	7	1
	B	6	∞	3	8	2
From City	C	8	7	∞	4	7
37.00 HONOROUS 10.00.00	D	12	4	6	∞	5
	E	1	3	2	8	∞

What should be the sequence of visit of the salesman so that the cost is minimum?

b) A department of a company has five employees with five jobs to be performed. The time (in hours) that each man takes to perform each job is given in the effectiveness matrix.

				Employee	S	
		1	II	III	IV	V
	A	10	5	13	15	16
	\boldsymbol{B}	3	9	18	13	6
Jobs	C	10	7	2	2	2
	D	7	11	9	7	12
	E	7	9	10	4	12

How should the jobs be allocated, one per employee, so as to minimize the total matrix-hours?

രുന്ദേശ

Total No. of Pages: 3

Seat No.

S.E. (Computer Science & Engg. - I) (Semester - III) Examination, December - 2015

DISCRETE MATHEMATICAL STRUCTURE (Paper - C) Sub. Code: 63525

Day and Date: Wednesday, 09 - 12 - 2015

Total Marks: 50

Time: 10.00 a.m. to 12.00 noon

Instructions:

- Questions No. 3 and 6 are compulsory.
- Solve any one question from Q.1 & Q.2.
- And solve any one question from Q.4 & Q.5.
- Figures to right indicate full marks.
- Q1) a) Show the following equivalence $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$ [4]
 - b) Let x = {2, 3, 6, 12, 24, 36} and the relation ≤ be such that x ≤ y if x divides y draw the hasse diagram of ⟨x,≤⟩
 - c) Obtain the PDNF of following without constructing truth table $(\neg P \rightarrow R) \land (Q \rightleftharpoons P)$ [5]
- **Q2)** a) i) Define cartesian product and write the members of $\{a,b\} \times \{1,2,3\}$ [4]
 - ii) $A = \{2, 3, 4\}$ $B = \{4, 5, 6\}$

Find A + B and B + C

- b) Prove that $\langle Z_4, +_4 \rangle$ is a group, where $+_4$ is congruence modulo 4 [4]
- c) Let $R = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle, \}$ $S = \{\langle 4, 2 \rangle, \langle 2, 5 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle\}$ [5]

Find

i) RoS

ii) SoR

iii) (RoS)oR

iv) Ro(SoR)

v) RoRoR

S - 2364

Q3) Answer any three (4 marks each):

[12]

- a) Demonstrate that R is a Valid inference from the premises P→Q,Q→R and P.
- b) Show the following are equivalent formula:
 - i) PV(P∧Q)⇔P
 - ii) $PV(P \wedge Q) \Leftrightarrow PVQ$
- c) Prove that

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

d) Explain group and subgroup with example.

Q4) a) Define following:

[6]

- Boolean algebra
- ii) Amplete lattice
- iii) Lattice homonorphism
- When a certain defective die is rolled, the number from 1 to 6 will appear with the following probabilities.

$$P(1) = \frac{2}{18} P(2) = \frac{3}{18} P(3) = \frac{4}{18} P(4) = \frac{3}{18} P(5) = \frac{4}{18} P(6) = \frac{2}{18}$$

Find the probability that

- i) an odd number is ontop
- ii) a prime number is ontop
- iii) a number less than 5 is ontop

Q5) a) Give different representations for tree given below:

[6]

Explain lattices as an algebraic system.

[6]

Q6) a) Explain role of product and rule of sum with example.

[5]

b) Define:

[4]

- i) adjacency matrix
- ii) Path matrix

OR

b) Draw the graph of methane (CH_s) and propane (C,H_s)

[4]

c) Define preorder, inorder, post order traversal with example.

[4]

Total No. of Pages: 2

Seat		
No.		

S.E. (Computer Science and Engineering) (Part - I) (Semester - III) Examination, December - 2015

DATA STRUCTURES (Revised)

Sub. Code: 63526

Day and Date: Monday, 14 - 12 - 2015

Total Marks: 50

Time: 10.00 a.m. to 12.00 noon

Instructions: 1) Figures to the right indicate full marks.

- 2) All questions are compulsory.
- 3) Assume suitable data wherever necessary.
- Q1) a) Explain with suitable examples following terms:

[6]

- i) Array
- ii) Functions
- iii) Control Structures
- Explain working of the Bubble Sort Algorithm. Comment on Complexity of Sorting Algorithms.

OR

b) Sort the following given numbers using Radix Sort Technique. [7]
 6, 5, 3, 1, 8, 7, 2, 4

Q2) Attempt any two from following questions.

[12]

- a) What are Hash Functions? List and explain different types of Hash Functions.
- b) With the help of examples and an algorithm, explain Overflow and Underflow conditions for Stack, Simple Queue and Circular Queue.
- Explain the procedure of converting Infix Notation to Postfix notation using stack.

S.	-	-	-	n
•		•	•	ŧ١
	-			•

- Q3) a) Write algorithm for Deleting a node from the beginning and end of singly linked list. [7]
 - b) What is Binary Search Tree? How to store Binary Search Tree in an Array? [6]

OR

- b) Explain algorithm for inserting a new data entry in B tree. [6]
- Q4) Attempt any two from the following questions:

[12]

- a) Explain techniques used to store a Graph.
- What is doubly Linked List? Explain algorithm for inserting a node in the middle of doubly linked list.
- c) Explain Insert Node operation in AVL Tree.

Total No. of Pages: 2

Seat No.

S.E. (CSE) (Part - II) (Semester - III) (Revised) Examination, December - 2015 DATA COMMUNICATIONS

Sub. Code: 63527 Total Marks: 50 Day and Date : Wednesday, 16 - 12 - 2015 Time: 10.00 a.m. to 12.00 p.m. Attempt any two questions from each Section. Instructions: 1) Figures to the right indicate full marks. 2) SECTION - I Define protocol and explain five components of data Q1) a) [6] communication. With neat diagram for data link layer discuss about the any four [6] responsibilities of Data link layer in OSI model. Explain data rate limit for noiseless channel. Consider the noiseless (Q2) a) channel with bandwidth of 3000 Hz transmitting a signal with two signal levels. What is the maximum bit rate. [6] Explain about return-to-zero line coding scheme. Draw diagram for [6] 01001110 using Polar NRZ-L scheme. Write about any five advantages and any two disadvantages of optical (03) a) [7] fiber. Explain in brief about any three about following: [6] i) Repeaters Bridges Switches iv) Routers

SECTION - II

Q4)	a)	Define Hamming distance and Explain Hamming code for C(7,4) detail.	in [7]
	b)	Difference between Go-Back-N Protocol and Selective Rep Protocol.	eat [6]
Q5)	a)	Difference between Pure ALOHA and Slotted ALOHA Protocol.	[6]
	b)	Explain configuration of HDLC in detail.	[6]
Q6)	a)	Design the Stop-and-Wait ARQ Protocol for Noisy channels detail.	in [7]
	b)	Compare IEEE standard IEEE802.3, 802.4 and 802.5	[6]

0000

S - 2369

Seat No.	,	Total No. of Pages: 1
-2/10/20	CSE) (Part - I) (Semester - III) Examination MICRO PROCESSORS	, December - 2015
	Sub. Code: 63528	
Day and	d Date : Friday, 11 - 12 - 2015	Max Marks: 50
Time : 1	10.00 a.m. to 12.00 p.m.	
Instructi	ions: 1) All questions are compulsory. 2) Figures to the right indicate full marks.	8 2
	SECTION - I	
Q1) a)	Draw & Explain Architecture of 8085.	[4]
b)	Explain any three directives related to assembler d	etails. [4]
Q2) a)	Explain PUSH and POP instruction with suitable d	liagram. [4]
b)	Write a program for find greater number between	two no's [4]
Q3) Wr	rite a short note on (any three)	$[3 \times 3 = 9]$
a)	Assembler	SWEETSTEET FAIR
b)	Protected Mode memory addressing.	
c)	MOV revisited	
d)	Program memory addressing mode.	
	SECTION - II	
Q4) a)	Explain Test & Bit Test Instruction.	[4]
b)	Draw & Explain Special 80386 Registers.	[4]
Q5) a)	Explain instruction related to addition operation.	[4]
b)	Explain basic interrupt processing.	[4]
Q6) Wri	rite a short note on (any three)	$[3 \times 3 \neq 9]$
a)	Near Jump	
b)	Virtual 8086 mode	
c)	Memory Interface	
d)	Hyper threading technology	
